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1. What is TCP/IP?
TCP/IP is a set of protocols developed to allow cooperating computers to share resources 
across a network. It was developed by a community of researchers centered around the 
ARPAnet. Certainly the ARPAnet is the best-known TCP/IP network. However as of June, 87, at
least 130 different vendors had products that support TCP/IP, and thousands of networks of 
all kinds use it. 

First some basic definitions. The most accurate name for the set of protocols we are 
describing is the "Internet protocol suite". TCP and IP are two of the protocols in this suite. 
(They will be described below.) Because TCP and IP are the best known of the protocols, it 
has become common to use the term TCP/IP or IP/TCP to refer to the whole family. It is 
probably not worth fighting this habit. However this can lead to some oddities. For example, 
I find myself talking about NFS as being based on TCP/IP, even though it doesn't use TCP at 
all. (It does use IP. But it uses an alternative protocol, UDP, instead of TCP. All of this alphabet
soup will be unscrambled in the following pages.) 

The Internet is a collection of networks, including the Arpanet, NSFnet, regional networks 
such as NYsernet, local networks at a number of University and research institutions, and a 
number of military networks. The term "Internet" applies to this entire set of networks. The 
subset of them that is managed by the Department of Defense is referred to as the "DDN" 
(Defense Data Network). This includes some research-oriented networks, such as the 
Arpanet, as well as more strictly military ones. (Because much of the funding for Internet 
protocol developments is done via the DDN organization, the terms Internet and DDN can 
sometimes seem equivalent.) All of these networks are connected to each other. Users can 
send messages from any of them to any other, except where there are security or other 
policy restrictions on access. Officially speaking, the Internet protocol documents are simply 
standards adopted by the Internet community for its own use. More recently, the 
Department of Defense issued a MILSPEC definition of TCP/IP. This was intended to be a 
more formal definition, appropriate for use in purchasing specifications. However most of the
TCP/IP community continues to use the Internet standards. The MILSPEC version is intended 
to be consistent with it. 

Whatever it is called, TCP/IP is a family of protocols. A few provide "low-level" functions 
needed for many applications. These include IP, TCP, and UDP. (These will be described in a 
bit more detail later.) Others are protocols for doing specific tasks, e.g. transferring files 
between computers, sending mail, or finding out who is logged in on another computer. 
Initially TCP/IP was used mostly between minicomputers or mainframes. These machines had
their own disks, and generally were self-contained. Thus the most important "traditional" 
TCP/IP services are: 

file transfer. The file transfer protocol (FTP) allows a user on any computer to get files from 
another computer, or to send files to another computer. Security is handled by requiring the 
user to specify a user name and password for the other computer. Provisions are made for 
handling file transfer between machines with different character set, end of line 
conventions, etc. This is not quite the same thing as more recent "network file system" or 
"netbios" protocols, which will be described below. Rather, FTP is a utility that you run any 
time you want to access a file on another system. You use it to copy the file to your own 
system. You then work with the local copy. (See RFC 959 for specifications for FTP.) 

remote login. The network terminal protocol (TELNET) allows a user to log in on any other 
computer on the network. You start a remote session by specifying a computer to connect 
to. From that time until you finish the session, anything you type is sent to the other 
computer. Note that you are really still talking to your own computer. But the telnet program



effectively makes your computer invisible while it is running. Every character you type is 
sent directly to the other system. Generally, the connection to the remote computer 
behaves much like a dialup connection. That is, the remote system will ask you to log in and 
give a password, in whatever manner it would normally ask a user who had just dialed it up. 
When you log off of the other computer, the telnet program exits, and you will find yourself 
talking to your own computer. Microcomputer implementations of telnet generally include a 
terminal emulator for some common type of terminal. (See RFC's 854 and 855 for 
specifications for telnet. By the way, the telnet protocol should not be confused with Telenet,
a vendor of commercial network services.) 

computer mail. This allows you to send messages to users on other computers. Originally, 
people tended to use only one or two specific computers. They would maintain "mail files" 
on those machines. The computer mail system is simply a way for you to add a message to 
another user's mail file. There are some problems with this in an environment where 
microcomputers are used. The most serious is that a micro is not well suited to receive 
computer mail. When you send mail, the mail software expects to be able to open a 
connection to the addressee's computer, in order to send the mail. If this is a 
microcomputer, it may be turned off, or it may be running an application other than the mail
system. For this reason, mail is normally handled by a larger system, where it is practical to 
have a mail server running all the time. Microcomputer mail software then becomes a user 
interface that retrieves mail from the mail server. (See RFC 821 and 822 for specifications 
for computer mail. See RFC 937 for a protocol designed for microcomputers to use in reading
mail from a mail server.) 

These services should be present in any implementation of TCP/IP, except that micro-
oriented implementations may not support computer mail. These traditional applications still
play a very important role in TCP/IP-based networks. However more recently, the way in 
which networks are used has been changing. The older model of a number of large, self-
sufficient computers is beginning to change. Now many installations have several kinds of 
computers, including microcomputers, workstations, minicomputers, and mainframes. These
computers are likely to be configured to perform specialized tasks. Although people are still 
likely to work with one specific computer, that computer will call on other systems on the net
for specialized services. This has led to the "server/client" model of network services. A 
server is a system that provides a specific service for the rest of the network. A client is 
another system that uses that service. (Note that the server and client need not be on 
different computers. They could be different programs running on the same computer.) Here 
are the kinds of servers typically present in a modern computer setup. Note that these 
computer services can all be provided within the framework of TCP/IP. 

network file systems. This allows a system to access files on another computer in a 
somewhat more closely integrated fashion than FTP. A network file system provides the 
illusion that disks or other devices from one system are directly connected to other systems.
There is no need to use a special network utility to access a file on another system. Your 
computer simply thinks it has some extra disk drives. These extra "virtual" drives refer to 
the other system's disks. This capability is useful for several different purposes. It lets you 
put large disks on a few computers, but still give others access to the disk space. Aside from 
the obvious economic benefits, this allows people working on several computers to share 
common files. It makes system maintenance and backup easier, because you don't have to 
worry about updating and backing up copies on lots of different machines. A number of 
vendors now offer high-performance diskless computers. These computers have no disk 
drives at all. They are entirely dependent upon disks attached to common "file servers". 
(See RFC's 1001 and 1002 for a description of PC-oriented NetBIOS over TCP. In the 
workstation and minicomputer area, Sun's Network File System is more likely to be used. 
Protocol specifications for it are available from Sun Microsystems.) 



remote printing. This allows you to access printers on other computers as if they were 
directly attached to yours. (The most commonly used protocol is the remote lineprinter 
protocol from Berkeley Unix. Unfortunately, there is no protocol document for this. However 
the C code is easily obtained from Berkeley, so implementations are common.) 

remote execution. This allows you to request that a particular program be run on a different
computer. This is useful when you can do most of your work on a small computer, but a few 
tasks require the resources of a larger system. There are a number of different kinds of 
remote execution. Some operate on a command by command basis. That is, you request 
that a specific command or set of commands should run on some specific computer. (More 
sophisticated versions will choose a system that happens to be free.) However there are also
"remote procedure call" systems that allow a program to call a subroutine that will run on 
another computer. (There are many protocols of this sort. Berkeley Unix contains two servers
to execute commands remotely: rsh and rexec. The man pages describe the protocols that 
they use. The user-contributed software with Berkeley 4.3 contains a "distributed shell" that 
will distribute tasks among a set of systems, depending upon load. Remote procedure call 
mechanisms have been a topic for research for a number of years, so many organizations 
have implementations of such facilities. The most widespread commercially-supported 
remote procedure call protocols seem to be Xerox's Courier and Sun's RPC. Protocol 
documents are available from Xerox and Sun. There is a public implementation of Courier 
over TCP as part of the user-contributed software with Berkeley 4.3. An implementation of 
RPC was posted to Usenet by Sun, and also appears as part of the user-contributed software 
with Berkeley 4.3.) 

name servers. In large installations, there are a number of different collections of names 
that have to be managed. This includes users and their passwords, names and network 
addresses for computers, and accounts. It becomes very tedious to keep this data up to date
on all of the computers. Thus the databases are kept on a small number of systems. Other 
systems access the data over the network. (RFC 822 and 823 describe the name server 
protocol used to keep track of host names and Internet addresses on the Internet. This is 
now a required part of any TCP/IP implementation. IEN 116 describes an older name server 
protocol that is used by a few terminal servers and other products to look up host names. 
Sun's Yellow Pages system is designed as a general mechanism to handle user names, file 
sharing groups, and other databases commonly used by Unix systems. It is widely available 
commercially. Its protocol definition is available from Sun.) 

terminal servers. Many installations no longer connect terminals directly to computers. 
Instead they connect them to terminal servers. A terminal server is simply a small computer 
that only knows how to run telnet (or some other protocol to do remote login). If your 
terminal is connected to one of these, you simply type the name of a computer, and you are 
connected to it. Generally it is possible to have active connections to more than one 
computer at the same time. The terminal server will have provisions to switch between 
connections rapidly, and to notify you when output is waiting for another connection. 
(Terminal servers use the telnet protocol, already mentioned. However any real terminal 
server will also have to support name service and a number of other protocols.) 

network-oriented window systems. Until recently, high- performance graphics programs 
had to execute on a computer that had a bit-mapped graphics screen directly attached to it. 
Network window systems allow a program to use a display on a different computer. Full-scale
network window systems provide an interface that lets you distribute jobs to the systems 
that are best suited to handle them, but still give you a single graphically-based user 
interface. (The most widely-implemented window system is X. A protocol description is 
available from MIT's Project Athena. A reference implementation is publically available from 
MIT. A number of vendors are also supporting NeWS, a window system defined by Sun. Both 
of these systems are designed to use TCP/IP.) 



Note that some of the protocols described above were designed by Berkeley, Sun, or other 
organizations. Thus they are not officially part of the Internet protocol suite. However they 
are implemented using TCP/IP, just as normal TCP/IP application protocols are. Since the 
protocol definitions are not considered proprietary, and since commercially-support 
implementations are widely available, it is reasonable to think of these protocols as being 
effectively part of the Internet suite. Note that the list above is simply a sample of the sort of
services available through TCP/IP. However it does contain the majority of the "major" 
applications. The other commonly-used protocols tend to be specialized facilities for getting 
information of various kinds, such as who is logged in, the time of day, etc. However if you 
need a facility that is not listed here, we encourage you to look through the current edition 
of Internet Protocols (currently RFC 1011), which lists all of the available protocols, and also 
to look at some of the major TCP/IP implementations to see what various vendors have 
added. 



2. General description of the TCP/IP protocols
TCP/IP is a layered set of protocols. In order to understand what this means, it is useful to 
look at an example. A typical situation is sending mail. First, there is a protocol for mail. This 
defines a set of commands which one machine sends to another, e.g. commands to specify 
who the sender of the message is, who it is being sent to, and then the text of the message. 
However this protocol assumes that there is a way to communicate reliably between the two
computers. Mail, like other application protocols, simply defines a set of commands and 
messages to be sent. It is designed to be used together with TCP and IP. TCP is responsible 
for making sure that the commands get through to the other end. It keeps track of what is 
sent, and retransmitts anything that did not get through. If any message is too large for one 
datagram, e.g. the text of the mail, TCP will split it up into several datagrams, and make sure
that they all arrive correctly. Since these functions are needed for many applications, they 
are put together into a separate protocol, rather than being part of the specifications for 
sending mail. You can think of TCP as forming a library of routines that applications can use 
when they need reliable network communications with another computer. Similarly, TCP calls
on the services of IP. Although the services that TCP supplies are needed by many 
applications, there are still some kinds of applications that don't need them. However there 
are some services that every application needs. So these services are put together into IP. 
As with TCP, you can think of IP as a library of routines that TCP calls on, but which is also 
available to applications that don't use TCP. This strategy of building several levels of 
protocol is called "layering". We think of the applications programs such as mail, TCP, and IP,
as being separate "layers", each of which calls on the services of the layer below it. 
Generally, TCP/IP applications use 4 layers: 

an application protocol such as mail

a protocol such as TCP that provides services need by many applications 

IP, which provides the basic    service    of    getting    datagrams    to their destination

the protocols needed to manage a specific physical medium, such as Ethernet or a point to 
point line. 

TCP/IP is based on the "catenet model". (This is described in more detail in IEN 48.) This 
model assumes that there are a large number of independent networks connected together 
by gateways. The user should be able to access computers or other resources on any of 
these networks. Datagrams will often pass through a dozen different networks before getting
to their final destination. The routing needed to accomplish this should be completely 
invisible to the user. As far as the user is concerned, all he needs to know in order to access 
another system is an "Internet address". This is an address that looks like 128.6.4.194. It is 
actually a 32-bit number. However it is normally written as 4 decimal numbers, each 
representing 8 bits of the address. (The term "octet" is used by Internet documentation for 
such 8-bit chunks. The term "byte" is not used, because TCP/IP is supported by some 
computers that have byte sizes other than 8 bits.) Generally the structure of the address 
gives you some information about how to get to the system. For example, 128.6 is a network
number assigned by a central authority to Rutgers University. Rutgers uses the next octet to 
indicate which of the campus Ethernets is involved. 128.6.4 happens to be an Ethernet used 
by the Computer Science Department. The last octet allows for up to 254 systems on each 
Ethernet. (It is 254 because 0 and 255 are not allowed, for reasons that will be discussed 
later.) Note that 128.6.4.194 and 128.6.5.194 would be different systems. The structure of 
an Internet address is described in a bit more detail later. 

Of course we normally refer to systems by name, rather than by Internet address. When we 



specify a name, the network software looks it up in a database, and comes up with the 
corresponding Internet address. Most of the network software deals strictly in terms of the 
address. (RFC 882 describes the name server technology used to handle this lookup.) 

TCP/IP is built on "connectionless" technology. Information is transfered as a sequence of 
"datagrams". A datagram is a collection of data that is sent as a single message. Each of 
these datagrams is sent through the network individually. There are provisions to open 
connections (i.e. to start a conversation that will continue for some time). However at some 
level, information from those connections is broken up into datagrams, and those datagrams
are treated by the network as completely separate. For example, suppose you want to 
transfer a 15000 octet file. Most networks can't handle a 15000 octet datagram. So the 
protocols will break this up into something like 30 500-octet datagrams. Each of these 
datagrams will be sent to the other end. At that point, they will be put back together into the
15000-octet file. However while those datagrams are in transit, the network doesn't know 
that there is any connection between them. It is perfectly possible that datagram 14 will 
actually arrive before datagram 13. It is also possible that somewhere in the network, an 
error will occur, and some datagram won't get through at all. In that case, that datagram has
to be sent again. 

Note by the way that the terms "datagram" and "packet" often seem to be nearly 
interchangable. Technically, datagram is the right word to use when describing TCP/IP. A 
datagram is a unit of data, which is what the protocols deal with. A packet is a physical 
thing, appearing on an Ethernet or some wire. In most cases a packet simply contains a 
datagram, so there is very little difference. However they can differ. When TCP/IP is used on 
top of X.25, the X.25 interface breaks the datagrams up into 128-byte packets. This is 
invisible to IP, because the packets are put back together into a single datagram at the other
end before being processed by TCP/IP. So in this case, one IP datagram would be carried by 
several packets. However with most media, there are efficiency advantages to sending one 
datagram per packet, and so the distinction tends to vanish. 

2.1 The TCP level
2.2 The IP level
2.3 The Ethernet level



2.1 The TCP level
Two separate protocols are involved in handling TCP/IP datagrams. TCP (the "transmission 
control protocol") is responsible for breaking up the message into datagrams, reassembling 
them at the other end, resending anything that gets lost, and putting things back in the right
order. IP (the "internet protocol") is responsible for routing individual datagrams. It may 
seem like TCP is doing all the work. And in small networks that is true. However in the 
Internet, simply getting a datagram to its destination can be a complex job. A connection 
may require the datagram to go through several networks at Rutgers, a serial line to the 
John von Neuman Supercomputer Center, a couple of Ethernets there, a series of 56Kbaud 
phone lines to another NSFnet site, and more Ethernets on another campus. Keeping track of
the routes to all of the destinations and handling incompatibilities among different transport 
media turns out to be a complex job. Note          that the interface between TCP and IP is fairly
simple. TCP simply hands IP a datagram with a destination. IP doesn't know how this 
datagram relates to any datagram before it or after it. 

It may have occurred to you that something is missing here. We have talked about Internet 
addresses, but not about how you keep track of multiple connections to a given system. 
Clearly it isn't enough to get a datagram to the right destination. TCP has to know which 
connection this datagram is part of. This task is referred to as "demultiplexing." In fact, there
are several levels of demultiplexing going on in TCP/IP. The information needed to do this 
demultiplexing is contained in a series of "headers". A header is simply a few extra octets 
tacked onto the beginning of a datagram by some protocol in order to keep track of it. It's a 
lot like putting a letter into an envelope and putting an address on the outside of the 
envelope. Except with modern networks it happens several times. It's like you put the letter 
into a little envelope, your secretary puts that into a somewhat bigger envelope, the campus
mail center puts that envelope into a still bigger one, etc. Here is an overview of the headers
that get stuck on a message that passes through a typical TCP/IP network: 

We start with a single data stream, say a file you are trying to send to some other computer:

......................................................

TCP breaks it up into manageable chunks. (In order to do this, TCP has to know how large a 
datagram your network can handle. Actually, the TCP's at each end say how big a datagram 
they can handle, and then they pick the smallest size.) 

....      ....      ....      ....      ....      ....      ....      ....

TCP puts a header at the front of each datagram. This header actually contains at least 20 
octets, but the most important ones are a source and destination "port number" and a 
"sequence number". The port numbers are used to keep track of different conversations. 
Suppose 3 different people are transferring files. Your TCP might allocate port numbers 1000,
1001, and 1002 to these transfers. When you are sending a datagram, this becomes the 
"source" port number, since you are the source of the datagram. Of course the TCP at the 
other end has assigned a port number of its own for the conversation. Your TCP has to know 
the port number used by the other end as well. (It finds out when the connection starts, as 
we will explain below.) It puts this in the "destination" port field. Of course if the other end 
sends a datagram back to you, the source and destination port numbers will be reversed, 
since then it will be the source and you will be the destination. Each datagram has a 
sequence number. This is used so that the other end can make sure that it gets the 
datagrams in the right order, and that it hasn't missed any. (See the TCP specification for 
details.) TCP doesn't number the datagrams, but the octets. So if there are 500 octets of 
data in each datagram, the first datagram might be numbered 0, the second 500, the next 



1000, the next 1500, etc. Finally, I will mention the Checksum. This is a number that is 
computed by adding up all the octets in the datagram (more or less - see the TCP spec). The 
result is put in the header. TCP at the other end computes the checksum again. If they 
disagree, then something bad happened to the datagram in transmission, and it is thrown 
away. So here's what the datagram looks like now. 

If we abbreviate the TCP header as "T", the whole file now looks like this: 

      T....      T....      T....      T....      T....      T....      T....

You will note that there are items in the header that I have not described above. They are 
generally involved with managing the connection. In order to make sure the datagram has 
arrived at its destination, the recipient has to send back an "acknowledgement". This is a 
datagram whose "Acknowledgement number" field is filled in. For example, sending a packet
with an acknowledgement of 1500 indicates that you have received all the data up to octet 
number 1500. If the sender doesn't get an acknowledgement within a reasonable amount of 
time, it sends the data again. The window is used to control how much data can be in transit
at any one time. It is not practical to wait for each datagram to be acknowledged before 
sending the next one. That would slow things down too much. On the other hand, you can't 
just keep sending, or a fast computer might overrun the capacity of a slow one to absorb 
data. Thus each end indicates how much new data it is currently prepared to absorb by 
putting the number of octets in its "Window" field. As the computer receives data, the 
amount of space left in its window decreases. When it goes to zero, the sender has to stop. 
As the receiver processes the data, it increases its window, indicating that it is ready to 
accept more data. Often the same datagram can be used to acknowledge receipt of a set of 
data and to give permission for additional new data (by an updated window). The "Urgent" 
field allows one end to tell the other to skip ahead in its processing to a particular octet. This
is often useful for handling asynchronous events, for example when you type a control 
character or other command that interrupts output. The other fields are beyond the scope of
this document. 



2.2 The IP level
TCP sends each of these datagrams to IP. Of course it has to tell IP the Internet address of 
the computer at the other end. Note that this is all IP is concerned about. It doesn't care 
about what is in the datagram, or even in the TCP header. IP's job is simply to find a route for
the datagram and get it to the other end. In order to allow gateways or other intermediate 
systems to forward the datagram, it adds its own header. The main things in this header are 
the source and destination Internet address (32-bit addresses, like 128.6.4.194), the protocol
number, and another checksum. The source Internet address is simply the address of your 
machine. (This is necessary so the other end knows where the datagram came from.) The 
destination Internet address is the address of the other machine. (This is necessary so any 
gateways in the middle know where you want the datagram to go.) The protocol number 
tells IP at the other end to send the datagram to TCP. Although most IP traffic uses TCP, there
are other protocols that can use IP, so you have to tell IP which protocol to send the 
datagram to. Finally, the checksum allows IP at the other end to verify that the header 
wasn't damaged in transit. Note that TCP and IP have separate checksums. IP needs to be 
able to verify that the header didn't get damaged in transit, or it could send a message to 
the wrong place. For reasons not worth discussing here, it is both more efficient and safer to 
have TCP compute a separate checksum for the TCP header and data. Once IP has tacked on
its header, here's what the message looks like: 

If we represent the IP header by an "I", your file now looks like this: 

      IT....      IT....      IT....      IT....      IT....      IT....      IT....

Again, the header contains some additional fields that have not been discussed. Most of 
them are beyond the scope of this document. The flags and fragment offset are used to keep
track of the pieces when a datagram has to be split up. This can happen when datagrams 
are forwarded through a network for which they are too big. (This will be discussed a bit 
more below.) The time to live is a number that is decremented whenever the datagram 
passes through a system. When it goes to zero, the datagram is discarded. This is done in 
case a loop develops in the system somehow. Of course this should be impossible, but well-
designed networks are built to cope with "impossible" conditions. 

At this point, it's possible that no more headers are needed. If your computer happens to 
have a direct phone line connecting it to the destination computer, or to a gateway, it may 
simply send the datagrams out on the line (though likely a synchronous protocol such as 
HDLC would be used, and it would add at least a few octets at the beginning and end). 



2.3 The Ethernet level
However most of our networks these days use Ethernet. So now we have to describe 
Ethernet's headers. Unfortunately, Ethernet has its own addresses. The people who designed
Ethernet wanted to make sure that no two machines would end up with the same Ethernet 
address. Furthermore, they didn't want the user to have to worry about assigning addresses.
So each Ethernet controller comes with an address builtin from the factory. In order to make 
sure that they would never have to reuse addresses, the Ethernet designers allocated 48 
bits for the Ethernet address. People who make Ethernet equipment have to register with a 
central authority, to make sure that the numbers they assign don't overlap any other 
manufacturer. Ethernet is a "broadcast medium". That is, it is in effect like an old party line 
telephone. When you send a packet out on the Ethernet, every machine on the network sees
the packet. So something is needed to make sure that the right machine gets it. As you 
might guess, this involves the Ethernet header. Every Ethernet packet has a 14-octet header
that includes the source and destination Ethernet address, and a type code. Each machine is
supposed to pay attention only to packets with its own Ethernet address in the destination 
field. (It's perfectly possible to cheat, which is one reason that Ethernet communications are 
not terribly secure.) Note that there is no connection between the Ethernet address and the 
Internet address. Each machine has to have a table of what Ethernet address corresponds to
what Internet address. (We will describe how this table is constructed a bit later.) In addition 
to the addresses, the header contains a type code. The type code is to allow for several 
different protocol families to be used on the same network. So you can use TCP/IP, DECnet, 
Xerox NS, etc. at the same time. Each of them will put a different value in the type field. 
Finally, there is a checksum. The Ethernet controller computes a checksum of the entire 
packet. When the other end receives the packet, it recomputes the checksum, and throws 
the packet away if the answer disagrees with the original. The checksum is put on the end of
the packet, not in the header. The final result is that your message looks like this: 

If we represent the Ethernet header with "E", and the Ethernet checksum with "C", your file 
now looks like this: 

      EIT....C      EIT....C      EIT....C      EIT....C      EIT....C

When these packets are received by the other end, of course all the headers are removed. 
The Ethernet interface removes the Ethernet header and the checksum. It looks at the type 
code. Since the type code is the one assigned to IP, the Ethernet device driver passes the 
datagram up to IP. IP removes the IP header. It looks at the IP protocol field. Since the 
protocol type is TCP, it passes the datagram up to TCP. TCP now looks at the sequence 
number. It uses the sequence numbers and other information to combine all the datagrams 
into the original file. 

The ends our initial summary of TCP/IP. There are still some crucial concepts we haven't 
gotten to, so we'll now go back and add details in several areas. (For detailed descriptions of
the items discussed here see, RFC 793 for TCP, RFC 791 for IP, and RFC's 894 and 826 for 
sending IP over Ethernet.) 





3. Well-known sockets and the applications layer
So far, we have described how a stream of data is broken up into datagrams, sent to another
computer, and put back together. However something more is needed in order to accomplish
anything useful. There has to be a way for you to open a connection to a specified computer,
log into it, tell it what file you want, and control the transmission of the file. (If you have a 
different application in mind, e.g. computer mail, some analogous protocol is needed.) This 
is done by "application protocols". The application protocols run "on top" of TCP/IP. That is, 
when they want to send a message, they give the message to TCP. TCP makes sure it gets 
delivered to the other end. Because TCP and IP take care of all the networking details, the 
applications protocols can treat a network connection as if it were a simple byte stream, like 
a terminal or phone line. 

Before going into more details about applications programs, we have to describe how you 
find an application. Suppose you want to send a file to a computer whose Internet address is
128.6.4.7. To start the process, you need more than just the Internet address. You have to 
connect to the FTP server at the other end. In general, network programs are specialized for 
a specific set of tasks. Most systems have separate programs to handle file transfers, remote
terminal logins, mail, etc. When you connect to 128.6.4.7, you have to specify that you want 
to talk to the FTP server. This is done by having "well-known sockets" for each server. Recall 
that TCP uses port numbers to keep track of individual conversations. User programs 
normally use more or less random port numbers. However specific port numbers are 
assigned to the programs that sit waiting for requests. For example, if you want to send a 
file, you will start a program called "ftp". It will open a connection using some random 
number, say 1234, for the port number on its end. However it will specify port number 21 for
the other end. This is the official port number for the FTP server. Note that there are two 
different programs involved. You run ftp on your side. This is a program designed to accept 
commands from your terminal and pass them on to the other end. The program that you talk
to on the other machine is the FTP server. It is designed to accept commands from the 
network connection, rather than an interactive terminal. There is no need for your program 
to use a well-known socket number for itself. Nobody is trying to find it. However the servers
have to have well-known numbers, so that people can open connections to them and start 
sending them commands. The official port numbers for each program are given in "Assigned 
Numbers". 

Note that a connection is actually described by a set of 4 numbers: the Internet address at 
each end, and the TCP port number at each end. Every datagram has all four of those 
numbers in it. (The Internet addresses are in the IP header, and the TCP port numbers are in 
the TCP header.) In order to keep things straight, no two connections can have the same set 
of numbers. However it is enough for any one number to be different. For example, it is 
perfectly possible for two different users on a machine to be sending files to the same other 
machine. This could result in connections with the following parameters: 

Internet addresses TCP ports
connection 1 128.6.4.194, 
128.6.4.7

1234, 21

connection 2 128.6.4.194, 
128.6.4.7

1235, 21

Since the same machines are involved, the Internet addresses are the same. Since they are 
both doing file transfers, one end of the connection involves the well-known port number for 
FTP. The only thing that differs is the port number for the program that the users are 
running. That's enough of a difference. Generally, at least one end of the connection asks 
the network software to assign it a port number that is guaranteed to be unique. Normally, 



it's the user's end, since the server has to use a well-known number. 

Now that we know how to open connections, let's get back to the applications programs. As 
mentioned earlier, once TCP has opened a connection, we have something that might as 
well be a simple wire. All the hard parts are handled by TCP and IP. However we still need 
some agreement as to what we send over this connection. In effect this is simply an 
agreement on what set of commands the application will understand, and the format in 
which they are to be sent. Generally, what is sent is a combination of commands and data. 
They use context to differentiate. For example, the mail protocol works like this: Your mail 
program opens a connection to the mail server at the other end. Your program gives it your 
machine's name, the sender of the message, and the recipients you want it sent to. It then 
sends a command saying that it is starting the message. At that point, the other end stops 
treating what it sees as commands, and starts accepting the message. Your end then starts 
sending the text of the message. At the end of the message, a special mark is sent (a dot in 
the first column). After that, both ends understand that your program is again sending 
commands. This is the simplest way to do things, and the one that most applications use. 

File transfer is somewhat more complex. The file transfer protocol involves two different 
connections. It starts out just like mail. The user's program sends commands like "log me in 
as this user", "here is my password", "send me the file with this name". However once the 
command to send data is sent, a second connection is opened for the data itself. It would 
certainly be possible to send the data on the same connection, as mail does. However file 
transfers often take a long time. The designers of the file transfer protocol wanted to allow 
the user to continue issuing commands while the transfer is going on. For example, the user 
might make an inquiry, or he might abort the transfer. Thus the designers felt it was best to 
use a separate connection for the data and leave the original command connection for 
commands. (It is also possible to open command connections to two different computers, 
and tell them to send a file from one to the other. In that case, the data couldn't go over the 
command connection.) 

Remote terminal connections use another mechanism still. For remote logins, there is just 
one connection. It normally sends data. When it is necessary to send a command (e.g. to set
the terminal type or to change some mode), a special character is used to indicate that the 
next character is a command. If the user happens to type that special character as data, two
of them are sent. 

We are not going to describe the application protocols in detail in this document. It's better 
to read the RFC's yourself. However there are a couple of common conventions used by 
applications that will be described here. First, the common network representation: TCP/IP is 
intended to be usable on any computer. Unfortunately, not all computers agree on how data 
is represented. There are differences in character codes (ASCII vs. EBCDIC), in end of line 
conventions (carriage return, line feed, or a representation using counts), and in whether 
terminals expect characters to be sent individually or a line at a time. In order to allow 
computers of different kinds to communicate, each applications protocol defines a standard 
representation. Note that TCP and IP do not care about the representation. TCP simply sends 
octets. However the programs at both ends have to agree on how the octets are to be 
interpreted. The RFC for each application specifies the standard representation for that 
application. Normally it is "net ASCII". This uses ASCII characters, with end of line denoted by
a carriage return followed by a line feed. For remote login, there is also a definition of a 
"standard terminal", which turns out to be a half-duplex terminal with echoing happening on 
the local machine. Most applications also make provisions for the two computers to agree on
other representations that they may find more convenient. For example, PDP-10's have 36-
bit words. There is a way that two PDP-10's can agree to send a 36-bit binary file. Similarly, 
two systems that prefer full-duplex terminal conversations can agree on that. However each 
application has a standard representation, which every machine must support. 





3.1 An example application: SMTP

In order to give a bit better idea what is involved in the application protocols, I'm going to 
show an example of SMTP, which is the mail protocol. (SMTP is "simple mail transfer 
protocol.) We assume that a computer called TOPAZ.RUTGERS.EDU wants to send the 
following message. 

Date: Sat, 27 Jun 87 13:26:31 EDT
From: hedrick@topaz.rutgers.edu
To: levy@red.rutgers.edu
Subject: meeting

Let's get together Monday at 1pm.

First, note that the format of the message itself is described by an Internet standard (RFC 
822). The standard specifies the fact that the message must be transmitted as net ASCII (i.e.
it must be ASCII, with carriage return/linefeed to delimit lines). It also describes the general 
structure, as a group of header lines, then a blank line, and then the body of the message. 
Finally, it describes the syntax of the header lines in detail. Generally they consist of a 
keyword and then a value. 

Note that the addressee is indicated as LEVY@RED.RUTGERS.EDU. Initially, addresses were 
simply "person at machine". However recent standards have made things more flexible. 
There are now provisions for systems to handle other systems' mail. This can allow 
automatic forwarding on behalf of computers not connected to the Internet. It can be used 
to direct mail for a number of systems to one central mail server. Indeed there is no 
requirement that an actual computer by the name of RED.RUTGERS.EDU even exist. The 
name servers could be set up so that you mail to department names, and each department's
mail is routed automatically to an appropriate computer. It is also possible that the part 
before the @ is something other than a user name. It is possible for programs to be set up to
process mail. There are also provisions to handle mailing lists, and generic names such as 
"postmaster" or "operator". 

The way the message is to be sent to another system is described by RFC's 821 and 974. 
The program that is going to be doing the sending asks the name server several queries to 
determine where to route the message. The first query is to find out which machines handle 
mail for the name RED.RUTGERS.EDU. In this case, the server replies that 
RED.RUTGERS.EDU handles its own mail. The program then asks for the address of 
RED.RUTGERS.EDU, which is 128.6.4.2. Then the mail program opens a TCP connection to 
port 25 on 128.6.4.2. Port 25 is the well-known socket used for receiving mail. Once this 
connection is established, the mail program starts sending commands. Here is a typical 
conversation. Each line is labelled as to whether it is from TOPAZ or RED. Note that TOPAZ 
initiated the connection: 

RED        220 RED.RUTGERS.EDU SMTP Service at 29 Jun 87 05:17:18 EDT
TOPAZ    HELO topaz.rutgers.edu
RED        250 RED.RUTGERS.EDU - Hello, TOPAZ.RUTGERS.EDU
TOPAZ    MAIL From:<hedrick@topaz.rutgers.edu>
RED        250 MAIL accepted
TOPAZ    RCPT To:<levy@red.rutgers.edu>
RED        250 Recipient accepted
TOPAZ    DATA
RED        354 Start mail input; end with <CRLF>.<CRLF>
TOPAZ    Date: Sat, 27 Jun 87 13:26:31 EDT



TOPAZ    From: hedrick@topaz.rutgers.edu
TOPAZ    To: levy@red.rutgers.edu
TOPAZ    Subject: meeting
TOPAZ
TOPAZ    Let's get together Monday at 1pm.
TOPAZ    .
RED        250 OK
TOPAZ    QUIT
RED        221 RED.RUTGERS.EDU Service closing transmission channel

First, note that commands all use normal text. This is typical of the Internet standards. Many 
of the protocols use standard ASCII commands. This makes it easy to watch what is going on
and to diagnose problems. For example, the mail program keeps a log of each conversation. 
If something goes wrong, the log file can simply be mailed to the postmaster. Since it is 
normal text, he can see what was going on. It also allows a human to interact directly with 
the mail server, for testing. (Some newer protocols are complex enough that this is not 
practical. The commands would have to have a syntax that would require a significant 
parser. Thus there is a tendency for newer protocols to use binary formats. Generally they 
are structured like C or Pascal record structures.) Second, note that the responses all begin 
with numbers. This is also typical of Internet protocols. The allowable responses are defined 
in the protocol. The numbers allow the user program to respond unambiguously. The rest of 
the response is text, which is normally for use by any human who may be watching or 
looking at a log. It has no effect on the operation of the programs. (However there is one 
point at which the protocol uses part of the text of the response.) The commands 
themselves simply allow the mail program on one end to tell the mail server the information 
it needs to know in order to deliver the message. In this case, the mail server could get the 
information by looking at the message itself. But for more complex cases, that would not be 
safe. Every session must begin with a HELO, which gives the name of the system that 
initiated the connection. Then the sender and recipients are specified. (There can be more 
than one RCPT command, if there are several recipients.) Finally the data itself is sent. Note 
that the text of the message is terminated by a line containing just a period. (If such a line 
appears in the message, the period is doubled.) After the message is accepted, the sender 
can send another message, or terminate the session as in the example above. 

Generally, there is a pattern to the response numbers. The protocol defines the specific set 
of responses that can be sent as answers to any given command. However programs that 
don't want to analyze them in detail can just look at the first digit. In general, responses that
begin with a 2 indicate success. Those that begin with 3 indicate that some further action is 
needed, as shown above. 4 and 5 indicate errors. 4 is a "temporary" error, such as a disk 
filling. The message should be saved, and tried again later. 5 is a permanent error, such as a
non-existent recipient. The message should be returned to the sender with an error 
message. 

(For more details about the protocols mentioned in this section, see RFC's 821/822 for mail, 
RFC 959 for file transfer, and RFC's 854/855 for remote logins. For the well-known port 
numbers, see the current edition of Assigned Numbers, and possibly RFC 814.) 



4. Protocols other than TCP: UDP and ICMP
So far, we have described only connections that use TCP. Recall that TCP is responsible for 
breaking up messages into datagrams, and reassembling them properly. However in many 
applications, we have messages that will always fit in a single datagram. An example is 
name lookup. When a user attempts to make a connection to another system, he will 
generally specify the system by name, rather than Internet address. His system has to 
translate that name to an address before it can do anything. Generally, only a few systems 
have the database used to translate names to addresses. So the user's system will want to 
send a query to one of the systems that has the database. This query is going to be very 
short. It will certainly fit in one datagram. So will the answer. Thus it seems silly to use TCP. 
Of course TCP does more than just break things up into datagrams. It also makes sure that 
the data arrives, resending datagrams where necessary. But for a question that fits in a 
single datagram, we don't need all the complexity of TCP to do this. If we don't get an 
answer after a few seconds, we can just ask again. For applications like this, there are 
alternatives to TCP. 

The most common alternative is UDP ("user datagram protocol"). UDP is designed for 
applications where you don't need to put sequences of datagrams together. It fits into the 
system much like TCP. There is a UDP header. The network software puts the UDP header on 
the front of your data, just as it would put a TCP header on the front of your data. Then UDP 
sends the data to IP, which adds the IP header, putting UDP's protocol number in the 
protocol field instead of TCP's protocol number. However UDP doesn't do as much as TCP 
does. It doesn't split data into multiple datagrams. It doesn't keep track of what it has sent 
so it can resend if necessary. About all that UDP provides is port numbers, so that several 
programs can use UDP at once. UDP port numbers are used just like TCP port numbers. 
There are well-known port numbers for servers that use UDP. Note that the UDP header is 
shorter than a TCP header. It still has source and destination port numbers, and a checksum,
but that's about it. No sequence number, since it is not needed. UDP is used by the protocols
that handle name lookups (see IEN 116, RFC 882, and RFC 883), and a number of similar 
protocols. 

Another alternative protocol is ICMP ("Internet control message protocol"). ICMP is used for 
error messages, and other messages intended for the TCP/IP software itself, rather than any 
particular user program. For example, if you attempt to connect to a host, your system may 
get back an ICMP message saying "host unreachable". ICMP can also be used to find out 
some information about the network. See RFC 792 for details of ICMP. ICMP is similar to UDP,
in that it handles messages that fit in one datagram. However it is even simpler than UDP. It 
doesn't even have port numbers in its header. Since all ICMP messages are interpreted by 
the network software itself, no port numbers are needed to say where a ICMP message is 
supposed to go. 



5. Keeping track of names and information: the domain 
system
As we indicated earlier, the network software generally needs a 32-bit Internet address in 
order to open a connection or send a datagram. However users prefer to deal with computer
names rather than numbers. Thus there is a database that allows the software to look up a 
name and find the corresponding number. When the Internet was small, this was easy. Each 
system would have a file that listed all of the other systems, giving both their name and 
number. There are now too many computers for this approach to be practical. Thus these 
files have been replaced by a set of name servers that keep track of host names and the 
corresponding Internet addresses. (In fact these servers are somewhat more general than 
that. This is just one kind of information stored in the domain system.) Note that a set of 
interlocking servers are used, rather than a single central one. There are now so many 
different institutions connected to the Internet that it would be impractical for them to notify 
a central authority whenever they installed or moved a computer. Thus naming authority is 
delegated to individual institutions. The name servers form a tree, corresponding to 
institutional structure. The names themselves follow a similar structure. A typical example is 
the name BORAX.LCS.MIT.EDU. This is a computer at the Laboratory for Computer Science 
(LCS) at MIT. In order to find its Internet address, you might potentially have to consult 4 
different servers. First, you would ask a central server (called the root) where the EDU server
is. EDU is a server that keeps track of educational institutions. The root server would give 
you the names and Internet addresses of several servers for EDU. (There are several servers
at each level, to allow for the possibly that one might be down.) You would then ask EDU 
where the server for MIT is. Again, it would give you names and Internet addresses of 
several servers for MIT. Generally, not all of those servers would be at MIT, to allow for the 
possibility of a general power failure at MIT. Then you would ask MIT where the server for 
LCS is, and finally you would ask one of the LCS servers about BORAX. The final result would 
be the Internet address for BORAX.LCS.MIT.EDU. Each of these levels is referred to as a 
"domain". The entire name, BORAX.LCS.MIT.EDU, is called a "domain name". (So are the 
names of the higher-level domains, such as LCS.MIT.EDU, MIT.EDU, and EDU.) 

Fortunately, you don't really have to go through all of this most of the time. First of all, the 
root name servers also happen to be the name servers for the top-level domains such as 
EDU. Thus a single query to a root server will get you to MIT. Second, software generally 
remembers answers that it got before. So once we look up a name at LCS.MIT.EDU, our 
software remembers where to find servers for LCS.MIT.EDU, MIT.EDU, and EDU. It also 
remembers the translation of BORAX.LCS.MIT.EDU. Each of these pieces of information has a 
"time to live" associated with it. Typically this is a few days. After that, the information 
expires and has to be looked up again. This allows institutions to change things. 

The domain system is not limited to finding out Internet addresses. Each domain name is a 
node in a database. The node can have records that define a number of different properties. 
Examples are Internet address, computer type, and a list of services provided by a 
computer. A program can ask for a specific piece of information, or all information about a 
given name. It is possible for a node in the database to be marked as an "alias" (or 
nickname) for another node. It is also possible to use the domain system to store 
information about users, mailing lists, or other objects. 

There is an Internet standard defining the operation of these databases, as well as the 
protocols used to make queries of them. Every network utility has to be able to make such 
queries, since this is now the official way to evaluate host names. Generally utilities will talk 
to a server on their own system. This server will take care of contacting the other servers for
them. This keeps down the amount of code that has to be in each application program. 



The domain system is particularly important for handling computer mail. There are entry 
types to define what computer handles mail for a given name, to specify where an individual
is to receive mail, and to define mailing lists. 

(See RFC's 882, 883, and 973 for specifications of the domain system. RFC 974 defines the 
use of the domain system in sending mail.) 



6. Routing
The description above indicated that the IP implementation is responsible for getting 
datagrams to the destination indicated by the destination address, but little was said about 
how this would be done. The task of finding how to get a datagram to its destination is 
referred to as "routing". In fact many of the details depend upon the particular 
implementation. However some general things can be said. 

First, it is necessary to understand the model on which IP is based. IP assumes that a system
is attached to some local network. We assume that the system can send datagrams to any 
other system on its own network. (In the case of Ethernet, it simply finds the Ethernet 
address of the destination system, and puts the datagram out on the Ethernet.) The problem
comes when a system is asked to send a datagram to a system on a different network. This 
problem is handled by gateways. A gateway is a system that connects a network with one or
more other networks. Gateways are often normal computers that happen to have more than 
one network interface. For example, we have a Unix machine that has two different Ethernet
interfaces. Thus it is connected to networks 128.6.4 and 128.6.3. This machine can act as a 
gateway between those two networks. The software on that machine must be set up so that 
it will forward datagrams from one network to the other. That is, if a machine on network 
128.6.4 sends a datagram to the gateway, and the datagram is addressed to a machine on 
network 128.6.3, the gateway will forward the datagram to the destination. Major 
communications centers often have gateways that connect a number of different networks. 
(In many cases, special-purpose gateway systems provide better performance or reliability 
than general-purpose systems acting as gateways. A number of vendors sell such systems.) 

Routing in IP is based entirely upon the network number of the destination address. Each 
computer has a table of network numbers. For each network number, a gateway is listed. 
This is the gateway to be used to get to that network. Note that the gateway doesn't have to
connect directly to the network. It just has to be the best place to go to get there. For 
example at Rutgers, our interface to NSFnet is at the John von Neuman Supercomputer 
Center (JvNC). Our connection to JvNC is via a high-speed serial line connected to a gateway 
whose address is 128.6.3.12. Systems on net 128.6.3 will list 128.6.3.12 as the gateway for 
many off-campus networks. However systems on net 128.6.4 will list 128.6.4.1 as the 
gateway to those same off-campus networks. 128.6.4.1 is the gateway between networks 
128.6.4 and 128.6.3, so it is the first step in getting to JvNC. 

When a computer wants to send a datagram, it first checks to see if the destination address 
is on the system's own local network. If so, the datagram can be sent directly. Otherwise, the
system expects to find an entry for the network that the destination address is on. The 
datagram is sent to the gateway listed in that entry. This table can get quite big. For 
example, the Internet now includes several hundred individual networks. Thus various 
strategies have been developed to reduce the size of the routing table. One strategy is to 
depend upon "default routes". Often, there is only one gateway out of a network. This 
gateway might connect a local Ethernet to a campus-wide backbone network. In that case, 
we don't need to have a separate entry for every network in the world. We simply define 
that gateway as a "default". When no specific route is found for a datagram, the datagram is
sent to the default gateway. A default gateway can even be used when there are several 
gateways on a network. There are provisions for gateways to send a message saying "I'm 
not the best gateway -- use this one instead." (The message is sent via ICMP. See RFC 792.) 
Most network software is designed to use these messages to add entries to their routing 
tables. Suppose network 128.6.4 has two gateways, 128.6.4.59 and 128.6.4.1. 128.6.4.59 
leads to several other internal Rutgers networks. 128.6.4.1 leads indirectly to the NSFnet. 
Suppose we set 128.6.4.59 as a default gateway, and have no other routing table entries. 
Now what happens when we need to send a datagram to MIT? MIT is network 18. Since we 



have no entry for network 18, the datagram will be sent to the default, 128.6.4.59. As it 
happens, this gateway is the wrong one. So it will forward the datagram to 128.6.4.1. But it 
will also send back an error saying in effect: "to get to network 18, use 128.6.4.1". Our 
software will then add an entry to the routing table. Any future datagrams to MIT will then go
directly to 128.6.4.1. (The error message is sent using the ICMP protocol. The message type 
is called "ICMP redirect.") 

Most IP experts recommend that individual computers should not try to keep track of the 
entire network. Instead, they should start with default gateways, and let the gateways tell 
them the routes, as just described. However this doesn't say how the gateways should find 
out about the routes. The gateways can't depend upon this strategy. They have to have 
fairly complete routing tables. For this, some sort of routing protocol is needed. A routing 
protocol is simply a technique for the gateways to find each other, and keep up to date 
about the best way to get to every network. RFC 1009 contains a review of gateway design 
and routing. However rip.doc is probably a better introduction to the subject. It contains 
some tutorial material, and a detailed description of the most commonly-used routing 
protocol. 



7. Details about Internet addresses: subnets and 
broadcasting
As indicated earlier, Internet addresses are 32-bit numbers, normally written as 4 octets (in 
decimal), e.g. 128.6.4.7. There are actually 3 different types of address. The problem is that 
the address has to indicate both the network and the host within the network. It was felt that
eventually there would be lots of networks. Many of them would be small, but probably 24 
bits would be needed to represent all the IP networks. It was also felt that some very big 
networks might need 24 bits to represent all of their hosts. This would seem to lead to 48 bit
addresses. But the designers really wanted to use 32 bit addresses. So they adopted a 
kludge. The assumption is that most of the networks will be small. So they set up three 
different ranges of address. Addresses beginning with 1 to 126 use only the first octet for the
network number. The other three octets are available for the host number. Thus 24 bits are 
available for hosts. These numbers are used for large networks. But there can only be 126 of
these very big networks. The Arpanet is one, and there are a few large commercial 
networks. But few normal organizations get one of these "class A" addresses. For normal 
large organizations, "class B" addresses are used. Class B addresses use the first two octets 
for the network number. Thus network numbers are 128.1 through 191.254. (We avoid 0 and
255, for reasons that we see below. We also avoid addresses beginning with 127, because 
that is used by some systems for special purposes.) The last two octets are available for host
addesses, giving 16 bits of host address. This allows for 64516 computers, which should be 
enough for most organizations. (It is possible to get more than one class B address, if you 
run out.) Finally, class C addresses use three octets, in the range 192.1.1 to 223.254.254. 
These allow only 254 hosts on each network, but there can be lots of these networks. 
Addresses above 223 are reserved for future use, as class D and E (which are currently not 
defined). 

Many large organizations find it convenient to divide their network number into "subnets". 
For example, Rutgers has been assigned a class B address, 128.6. We find it convenient to 
use the third octet of the address to indicate which Ethernet a host is on. This division has no
significance outside of Rutgers. A computer at another institution would treat all datagrams 
addressed to 128.6 the same way. They would not look at the third octet of the address. 
Thus computers outside Rutgers would not have different routes for 128.6.4 or 128.6.5. But 
inside Rutgers, we treat 128.6.4 and 128.6.5 as separate networks. In effect, gateways 
inside Rutgers have separate entries for each Rutgers subnet, whereas gateways outside 
Rutgers just have one entry for 128.6. Note that we could do exactly the same thing by 
using a separate class C address for each Ethernet. As far as Rutgers is concerned, it would 
be just as convenient for us to have a number of class C addresses. However using class C 
addresses would make things inconvenient for the rest of the world. Every institution that 
wanted to talk to us would have to have a separate entry for each one of our networks. If 
every institution did this, there would be far too many networks for any reasonable gateway 
to keep track of. By subdividing a class B network, we hide our internal structure from 
everyone else, and save them trouble. This subnet strategy requires special provisions in the
network software. It is described in RFC 950. 

0 and 255 have special meanings. 0 is reserved for machines that don't know their address. 
In certain circumstances it is possible for a machine not to know the number of the network 
it is on, or even its own host address. For example, 0.0.0.23 would be a machine that knew it
was host number 23, but didn't know on what network. 

255 is used for "broadcast". A broadcast is a message that you want every system on the 
network to see. Broadcasts are used in some situations where you don't know who to talk to.
For example, suppose you need to look up a host name and get its Internet address. 
Sometimes you don't know the address of the nearest name server. In that case, you might 



send the request as a broadcast. There are also cases where a number of systems are 
interested in information. It is then less expensive to send a single broadcast than to send 
datagrams individually to each host that is interested in the information. In order to send a 
broadcast, you use an address that is made by using your network address, with all ones in 
the part of the address where the host number goes. For example, if you are on network 
128.6.4, you would use 128.6.4.255 for broadcasts. How this is actually implemented 
depends upon the medium. It is not possible to send broadcasts on the Arpanet, or on point 
to point lines. However it is possible on an Ethernet. If you use an Ethernet address with all 
its bits on (all ones), every machine on the Ethernet is supposed to look at that datagram. 

Although the official broadcast address for network 128.6.4 is now 128.6.4.255, there are 
some other addresses that may be treated as broadcasts by certain implementations. For 
convenience, the standard also allows 255.255.255.255 to be used. This refers to all hosts 
on the local network. It is often simpler to use 255.255.255.255 instead of finding out the 
network number for the local network and forming a broadcast address such as 128.6.4.255.
In addition, certain older implementations may use 0 instead of 255 to form the broadcast 
address. Such implementations would use 128.6.4.0 instead of 128.6.4.255 as the broadcast
address on network 128.6.4. Finally, certain older implementations may not understand 
about subnets. Thus they consider the network number to be 128.6. In that case, they will 
assume a broadcast address of 128.6.255.255 or 128.6.0.0. Until support for broadcasts is 
implemented properly, it can be a somewhat dangerous feature to use. 

Because 0 and 255 are used for unknown and broadcast addresses, normal hosts should 
never be given addresses containing 0 or 255. Addresses should never begin with 0, 127, or 
any number above 223. Addresses violating these rules are sometimes referred to as 
"Martians", because of rumors that the Central University of Mars is using network 225. 



8. Datagram fragmentation and reassembly
TCP/IP is designed for use with many different kinds of network. Unfortunately, network 
designers do not agree about how big packets can be. Ethernet packets can be 1500 octets 
long. Arpanet packets have a maximum of around 1000 octets. Some very fast networks 
have much larger packet sizes. At first, you might think that IP should simply settle on the 
smallest possible size. Unfortunately, this would cause serious performance problems. When
transferring large files, big packets are far more efficient than small ones. So we want to be 
able to use the largest packet size possible. But we also want to be able to handle networks 
with small limits. There are two provisions for this. First, TCP has the ability to "negotiate" 
about datagram size. When a TCP connection first opens, both ends can send the maximum 
datagram size they can handle. The smaller of these numbers is used for the rest of the 
connection. This allows two implementations that can handle big datagrams to use them, 
but also lets them talk to implementations that can't handle them. However this doesn't 
completely solve the problem. The most serious problem is that the two ends don't 
necessarily know about all of the steps in between. For example, when sending data 
between Rutgers and Berkeley, it is likely that both computers will be on Ethernets. Thus 
they will both be prepared to handle 1500-octet datagrams. However the connection will at 
some point end up going over the Arpanet. It can't handle packets of that size. For this 
reason, there are provisions to split datagrams up into pieces. (This is referred to as 
"fragmentation".) The IP header contains fields indicating the a datagram has been split, and
enough information to let the pieces be put back together. If a gateway connects an 
Ethernet to the Arpanet, it must be prepared to take 1500-octet Ethernet packets and split 
them into pieces that will fit on the Arpanet. Furthermore, every host implementation of 
TCP/IP must be prepared to accept pieces and put them back together. This is referred to as 
"reassembly". 

TCP/IP implementations differ in the approach they take to deciding on datagram size. It is 
fairly common for implementations to use 576-byte datagrams whenever they can't verify 
that the entire path is able to handle larger packets. This rather conservative strategy is 
used because of the number of implementations with bugs in the code to reassemble 
fragments. Implementors often try to avoid ever having fragmentation occur. Different 
implementors take different approaches to deciding when it is safe to use large datagrams. 
Some use them only for the local network. Others will use them for any network on the same
campus. 576 bytes is a "safe" size, which every implementation must support. 



9. Ethernet encapsulation: ARP
There was a brief discussion earlier about what IP datagrams look like on an Ethernet. The 
discussion showed the Ethernet header and checksum. However it left one hole: It didn't say
how to figure out what Ethernet address to use when you want to talk to a given Internet 
address. In fact, there is a separate protocol for this, called ARP ("address resolution 
protocol"). (Note by the way that ARP is not an IP protocol. That is, the ARP datagrams do 
not have IP headers.) Suppose you are on system 128.6.4.194 and you want to connect to 
system 128.6.4.7. Your system will first verify that 128.6.4.7 is on the same network, so it 
can talk directly via Ethernet. Then it will look up 128.6.4.7 in its ARP table, to see if it 
already knows the Ethernet address. If so, it will stick on an Ethernet header, and send the 
packet. But suppose this system is not in the ARP table. There is no way to send the packet, 
because you need the Ethernet address. So it uses the ARP protocol to send an ARP request. 
Essentially an ARP request says "I need the Ethernet address for 128.6.4.7". Every system 
listens to ARP requests. When a system sees an ARP request for itself, it is required to 
respond. So 128.6.4.7 will see the request, and will respond with an ARP reply saying in 
effect "128.6.4.7 is 8:0:20:1:56:34". (Recall that Ethernet addresses are 48 bits. This is 6 
octets. Ethernet addresses are conventionally shown in hex, using the punctuation shown.) 
Your system will save this information in its ARP table, so future packets will go directly. Most
systems treat the ARP table as a cache, and clear entries in it if they have not been used in 
a certain period of time. 

Note by the way that ARP requests must be sent as "broadcasts". There is no way that an 
ARP request can be sent directly to the right system. After all, the whole reason for sending 
an ARP request is that you don't know the Ethernet address. So an Ethernet address of all 
ones is used, i.e. ff:ff:ff:ff:ff:ff. By convention, every machine on the Ethernet is required to 
pay attention to packets with this as an address. So every system sees every ARP requests. 
They all look to see whether the request is for their own address. If so, they respond. If not, 
they could just ignore it. (Some hosts will use ARP requests to update their knowledge about 
other hosts on the network, even if the request isn't for them.) Note that packets whose IP 
address indicates broadcast (e.g. 255.255.255.255 or 128.6.4.255) are also sent with an 
Ethernet address that is all ones. 



10. Getting more information
This directory contains documents describing the major protocols. There are literally 
hundreds of documents, so we have chosen the ones that seem most important. Internet 
standards are called RFC's. RFC stands for Request for Comment. A proposed standard is 
initially issued as a proposal, and given an RFC number. When it is finally accepted, it is 
added to Official Internet Protocols, but it is still referred to by the RFC number. We have also
included two IEN's. (IEN's used to be a separate classification for more informal documents. 
This classification no longer exists -- RFC's are now used for all official Internet documents, 
and a mailing list is used for more informal reports.) The convention is that whenever an RFC
is revised, the revised version gets a new number. This is fine for most purposes, but it 
causes problems with two documents: Assigned Numbers and Official Internet Protocols. 
These documents are being revised all the time, so the RFC number keeps changing. You will
have to look in rfc-index.txt to find the number of the latest edition. Anyone who is seriously 
interested in TCP/IP should read the RFC describing IP (791). RFC 1009 is also useful. It is a 
specification for gateways to be used by NSFnet. As such, it contains an overview of a lot of 
the TCP/IP technology. You should probably also read the description of at least one of the 
application protocols, just to get a feel for the way things work. Mail is probably a good one 
(821/822). TCP (793) is of course a very basic specification. However the spec is fairly 
complex, so you should only read this when you have the time and patience to think about it
carefully. Fortunately, the author of the major RFC's (Jon Postel) is a very good writer. The 
TCP RFC is far easier to read than you would expect, given the complexity of what it is 
describing. You can look at the other RFC's as you become curious about their subject 
matter. 

Here is a list of the documents you are more likely to want: 

rfc-index list of all RFC's

rfc1065/6/7 Simple Network Management Protocol (SNMP). A protocol    to 
get information from gateways and hosts, to monitor    
failures, and to reconfigure gateways and hosts    remotely. 
This protocol will be the foundation for    network management
activities involving TCP/IP. RFC    1028 documents the Simple 
Gateway Monitoring Protocol    (SGMP), which is an interim 
protocol on which SNMP is    based. SGMP will be replaced by 
SNMP during 1988/89. 

rfc1064,1056,937 protocols for reading mail on PC's
rfc1062 Assigned Numbers. If you are working with TCP/IP, you    will 

probably want a hardcopy of this as a reference.    It's not very
exciting to read, but is essential. It    lists all the offically 
defined well-known ports and    lots of other things.

rfc1059 Network Time Protocol. A protocol for synchronizing    the time 
on all your machines. Also allows you to get    time from one of
the national time standards. 

rfc1058 Routing Information Protocol. Details of the most    commonly-
used routing protocol. 

rfc1057 RPC. A protocol for remote procedure calls. Sun's    Network 
File System is based on this. The actual NFS    protocol 
specification is currently available only from    Sun. Sun 
supplies a public domain implementation of    RPC. Aside from 
its use by NFS (whose implementation    is not public domain), 
RPC has been used by a number of    groups for building 
server/client systems such as    remote database servers. See 



also RFC 1014.
rfc1042 IP encapsulation for IEEE 802 networks. This will be    used for 

the IEEE token ring, broadband, etc. In    principle it seems 
that this would cover Ethernet,    since Ethernet is IEEE 802.3. 
However the normal    encapsulation used on Ethernet is 
defined by RFC 894.

rfc1032/3/4/5 domains (the database used to go from host names to    
Internet address and back -- also used to handle UUCP    these 
days). This includes protocol standards, as well    as 
information directed at people who are going to have    to set 
up a domain name server. Every site should have    a copy of 
these documents.

rfc1014 XDR: External Data Representation Standard. This is    part of 
the specifications for Sun's RPC protocol (RFC    1057), which is
the protocol underlying Sun's Network    File System.

rfc1013 X Window System Protocol, Version 11. Documents the  
most commonly used remote window system. 

rfc1012 list of all RFC's below 1000, with somewhat more    information
than rfc-index.

rfc1011 Official Protocols. It's useful to scan this to see    what tasks 
protocols have been built for. This defines    which RFC's are 
actual standards, as opposed to    requests for comments. 

rfc1009 NSFnet gateway specifications. A good overview of IP    routing
and gateway technology.

rfc1001/2 netBIOS: networking for PC's
rfc959 FTP (file transfer)
rfc950 subnets 
rfc894 how IP is to be put on Ethernet, see also rfc825 
rfc854/5 telnet - protocol for remote logins 
rfc826 ARP - protocol for finding out Ethernet addresses 
rfc821/2 mail
rfc814 names and ports - general concepts behind well-known ports 
rfc793 TCP
rfc792 ICMP
rfc791 IP
rfc768 UDP
ien-116 old name server (still needed by several kinds of    system) 
ien-48 the Catenet model, general description of the    philosophy 

behind TCP/IP 

The following documents are somewhat more specialized. 

rfc1055 SLIP (IP for dialup lines) 
rfc1054 IP multicasting
rfc1048 Bootp, a protocol often used to allow diskless systems    to find

their IP address.
rfc813 window and acknowledgement strategies in TCP 
rfc815 datagram reassembly techniques 
rfc816 fault isolation and resolution techniques 
rfc817 modularity and efficiency in implementation 
rfc879 the maximum segment size option in TCP 
rfc896 congestion control 
rfc827,888,904,975,
985

EGP and related issues 



To those of you who may be reading this document remotely instead of at Rutgers: The most
important RFC's have been collected into a three-volume set, the DDN Protocol Handbook. It 
is available from the 

DDN Network Information Center, 
SRI International, 
333 Ravenswood Avenue, 
Menlo Park, 
California 94025 

(telephone: 800-235-3155). 

You should be able to get them via anonymous FTP from sri-nic.arpa. File names are: 

RFC's rfc:rfc-index.txt
rfc:rfcxxx.txt

IEN's ien:ien-index.txt
ien:ien-xxx.txt

Sites with access to UUCP but not FTP may be able to retreive them via UUCP from UUCP 
host rutgers. The file names would be:

RFC's /topaz/pub/pub/tcp-ip-docs/rfc-index.txt
/topaz/pub/pub/tcp-ip-docs/rfcxxx.txt

IEN's /topaz/pub/pub/tcp-ip-docs/ien-index.txt
/topaz/pub/pub/tcp-ip-docs/ien-xxx.txt

Note that SRI-NIC has the entire set of RFC's and IEN's, but rutgers and topaz have only 
those specifically mentioned above. 






